TCAD Approach for the Assessment of Interconnect Reliability

Hajdin Ceric, Marco Rovitto, and Roberto Lacerda de Orio

Institute for Microelectronics, TU Wien
www.iue.tuwien.ac.at

Christian Doppler Laboratory for Reliability Issues in Microelectronics
Overview

- Full-physical modelling TCAD
- Compact modeling
- Case study I: electromigration in solder bumps
- Case study II: electromigration in through silicon via
- New challenges: Reliability TCAD for nanointerconnects
- Conclusion and outlook
Full-Physics Models of Electromigration

- Material transport for arbitrary 3D layouts
 - Point defect dynamics
 - Mechanical stress
- Grain boundaries and Interfaces
 - Fast diffusivity paths
 - Point defect recombination
Usual approach: Fitting of Black’s equation and time extrapolation

Problems
- Black has derived his equation for straight aluminum interconnect
- Parameters are applicable only for the structures already used for fitting

Full-physics models (Sarychev et al. JAP 1999)
- Applicable to arbitrarily 3D geometries, layouts, and materials
- Extendable with submodels for microstructure and interfaces
- Design of compact model tailored for specific application
- Explanation of different impact factors (geometry, microstructure)

The goal: Through combination of experiments, full physics and compact modeling to design and optimize for reliability
- Multilevel interconnect structures
- Through silicon vias
- Solder bumps
- Nanointerconnects (+ alternative metals)
Electromigration: Time to Failure (TTF)

\[\frac{\Delta R}{R_0} (\%) \]

\[\text{Time (a.u.)} \]

Void Initiation

Void Evolution
Electromigration: Void Initiation

\[t_I \sim \frac{1}{j^2} \]

Simulation Start

→ Electro-Thermal Model

→ Vacancy Dynamics Model

→ Solid Mechanics Model

\[\text{N} \]

Void is Nucleated?

\[\text{Y} \]

Ceric et al., IEEE TDMR, vol. 9, 2009,
Electromigration: Void Nucleation

\[t_N \sim \frac{1}{j} \]

Fridline and Bower, JAP, vol. 85, 1999
Ceric et al., IEICE Tran. Elect. vol 86, 2003,
Lacerda de Orio, PhD thesis, TU Wien, 2005
Compact Modeling

- Compact Modeling
 - Void initiation phase (t_I)
 - Void evolution phase (t_E)
- Time to failure (TTF)

 \[TTF = t_I + t_E \]

- Black’s equation
 - A good basis for development
 - Rigorous derivation*

- Full-physics models available
 - Ceric-Orio
 - Sukharev
 - Weide-Zaage

*Shatzkes and Lloyd, JAP, vol. 59, 1986
Case Study: 3D Integration components

- Wafers
- Through Silicon Via (TSV)
- Solder Bump
Solder bump provides electrical connectivity between different functional dies.

Desirable properties: low melting point, mechanical stability, resistance to EM.

Used materials: lead, tin alloys.

Under bump metallization (UBM) is used to reduce effect of current crowding.
Case Study: Solder Bump

Current density ($\times 10^3$ A/cm²)

Ceric et al., SISPAD 2015
Institute for Microelectronics
Case Study: Solder Bump

- Observation from simulation

- Modifying Black’s equation

\[\sigma \sim j R^2 \sqrt{t} \]

\[t_f = \left(\frac{A}{j^2} \left(\frac{\sigma_c}{\alpha R^2 + \beta} \right)^2 + \frac{B}{j} \right) \exp \left(\frac{E_a}{kT} \right) \]
Case Study: Solder Bump

![Graph showing the relationship between Log (Time) and Current density (x10^3 A/cm^2) for different values of 2R: 50 sim., 70 sim., 90 sim., 50 eq., 70 eq., 90 eq.](image)
Case Study: Through Silicon Via (TSV)

Test conditions:
- $T = 200^\circ C$
- $J_0 = 1 MA/cm^2$

Boundary conditions:
- Thermal insulation
- Fixed constraints
- Electrical insulation
- EM blocking Cu/TiN

Rovitto et al. ECTC 2016, Rovitto et al. to be submitted Microel. Real.
Case Study: Through Silicon Via (TSV)
Case Study: Through Silicon Via (TSV)

\[
TTF = A J^{-n} \exp\left(\frac{E_a}{k_B T}\right)
\]

\[n = 1.51 \pm 0.05\]
New challenges: Reliability TCAD for Nanointerconnects

- Building a compact model for nanointerconnects (100nn -> 10nm)
- EM is related to resistivity on the atomistic level
 - Both rise due to electron scattering effects
- *Ab initio* relationship between effective “wind” valence $Z_{\text{wind}}(T)$ and resistivity $\rho(T)$

\[Z_{\text{wind}}(T) = \frac{K(T)}{\rho(T)} \]

- Lower resistivity in the metallic bulk implies higher EM
EM on Atomic Level

- EM on atomic level is a multi-scattering process*
 - EM force exerted by scattered electrons on ions
 \[
 \vec{F} = - \int \delta n(\vec{r}) \frac{\partial V}{\partial R} d^3r
 \]
 - Electron density which depends on external field
 \[
 \delta n(\vec{r}) = \sum_k g_k |\psi_k(\vec{r})|^2
 \]
 - Shifted electron distribution
 \[
 g_k = -\frac{e\hbar \tau(k)}{m} v(k) \cdot \vec{E} \delta(\mathcal{E}_F - \mathcal{E}_k)
 \]

*Landauer, Sorbello,
Experimental observations (IMEC)
- Shorter EM lifetime with decreasing interconnect width
- Dielectric (with smaller k and Young modulus) dependence

Wen et. al. IITC 2015
New challenges: Reliability TCAD for Nanointerconnects

- Building the compact model

Compact models

- Bulk
- Schatzkes-Lloyd Parametrization
- Resistivity Model
- Electromigration Black’s equation
- Full-physical model Layout features
- Mayadas-Schatzkes Interfaces
- Fuchs-Sondheimer Grain boundaries
New challenges: Reliability TCAD for Nanointerconnects

- Simulation setting
 - Constant voltage
 - No microstructure module activated
 - Higher diffusivity on the top interface
New challenges: Reliability TCAD for Nanointerconnects

- Modifying Black’s equation

\[t_f = t_N + t_E = \left(\frac{A(\rho)}{j^2 h^{1.6}} + \frac{B(\rho)h^2}{j} \right) \exp \left(\frac{E_a}{kT} \right) \]
Conclusion and Outlook

- Full-physics modeling provides a basis for studying general EM and related interconnect reliability problems.

- For studying particular cases it is advantageous to develop compact models relying on full-physics modeling and experiments.

- Developed compact models have been successfully applied to study reliability of multilevel interconnects, TSVs, and solder bumps.

- The multitude of reliability issues which rises with nanointerconnect technology demands an approach founded on full-physics modeling.